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Renormalisation of a diffusion on an anisotropic chain 

M Napidrkowski 
Institute of Theoretical Physics, Warsaw University, Hoia 69, 00-681 Warszawa, Poland 

Received 15 February 1983 

Abstract. A direct renormalisation method is used to calculate the index Y which charac- 
terises the mean square displacement of a walk on a one-dimensional, anisotropic, 
homogeneous lattice: (R~)”’- n u  for large number of steps n .  The two-parameter, exact 
analysis is carried out for arbitrary choice of the cell size. The results are shown to be 
independent of the cell size. 

1. Introduction 

The diffusion on random one-dimensional systems has recently attracted much interest 
(Derrida and Pomeau 1982, Alexander et a1 1981). In this paper we consider the 
diffusion on the one-dimensional, homogeneous but anisotropic, infinite lattice. The 
diffusing particle can jump from the ith site either to the site i - 1 with probability q 
or to the site i + 1 with probability 1-4.  For large number of steps n the mean square 
displacement of the particle is described by the asymptotic law (R,) -n”. Our 
purpose is to calculate the index v by the direct renormalisation method. This method 
was previously applied to walks in one (Heye and Napiorkowski 1980) and in two 
dimensions (Shapiro 1978, Napiorkowski et a1 1979). 
Before applying the renormalisation scheme we solve our problem with the help 

of a simple equation. Let Pk(n) denote the probability that the particle starting from 
the origin occupies after n steps the kth site. Pk(n) obeys the equation 

2 1 / 2  

P&(n +l)=qPk+l(n)+(l-q)Pk-l(n). (1) 

The mean displacement (R,) = Zk kPk(n) and the mean square displacement 
(R:) = Zk k2Pk(n)  (after n steps) satisfy simple recurrence relations: 

@,+I )  = (Rn) + 1 - 2q (R;+i) = ( R ; )  + 2(Rn)(1 - 2q)  + 1. ( 2 ~ ,  6 )  
Their solutions 

(R,) = n (1 - 2q) (R: )=n2( l -2q)2+n4q(1-q)  (3a, b )  

imply the following formula for v : 

for q = 0.5 
for q # 0.5. (4) 

The index v depends in a discontinuous way on q. It takes on only two values: v = 0.5 
(as for the random walk, q = 0.5) and v = 1 (as for the self-avoiding walk, q = 0 or q = 1). 
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2. Renormalisation 

Now we shall obtain formula (4) by the renormalisation method. The basic idea is 
to formulate our walk problem as a critical problem which is then renormalised. The 
details of the procedure have been described elsewhere (Napiorkowski et a1 1979, 
Hprye and Napiorkowski 1980). Let us recall that the procedure consists of two main 
steps. First we collect groups of 1 ( I  > 1) consecutive sites of a linear lattice into the 
sites of the renormalised lattice and then with each walk W on the original lattice we 
associate a unique walk W'  on the renormalised lattice. This is done in a standard 
way: a renormalised site is visited during W'  if and only if a majority of its 1 sites are 
visited during W. (If exactly one half of the sites are visited then an arbitrarily selected 
site must be visited during W to have the visit registered. We take this selected site 
to be the site number $1 +1 in the cell.) Though in the one-dimensional case a 
nearest-neighbour site walk W generates only a nearest-neighbour cell walk W ' ,  we 
still need a two-parameter renormalisation. This is due to the anisotropy of the system: 
a step to the left is given a weight L and a step to the right is given a weight R. Next, 
by considering all the site walks compatible with a given cell step, one determines the 
renormalisation equations: L' = FL(L ,  R), R' = F R  (L ,  R) ,  the flow lines, the fixed 
points and the biggest relevant eigenvalue A at each fixed point. This eigenvalue A 
determines the exponent v, 

Y =In llln A .  ( 5 )  

Consider a linear lattice divided into I-site groups, figure 1. In order to evaluate 
the first renormalisation equation L' = F L ( L ,  R )  we have to consider all the site walks 
that start at a certain site, called the s-site, and terminate at the corresponding site 
in the neighbouring cell to the left (this site is called the 1-site) without visiting the 
corresponding selected sites in other cells. The 1-site can be visited only once while 
the rest of the allowed sites (21 - 1 of them) can be visited an arbitrary number of 
times. The second renormalisation equation is obtained by an analogous procedure 
in which the 1-site is replaced by the r-site. Following previous work (Hprye and 
Napidrkowski 1980) we introduce four functions: g;, ,(n),  f; , , (n),  g F r ( n ) ,  fF , (n) .  The 
gk,l(n) is the number of different n-step walks that end up 1 units to the left from the 
s-site and such that the left endpoint together with the p sites to the right of it are 
all available during the walk. The f ; , , (n)  is defined as g; ,[(n)  with the additional 
restriction that the 1-site is visited only once. The functions g;,(n) and f F l ( n )  are 
defined analogously with the obvious interchange of the left and right directions. By 
symmetry f F , ( n )  = f ; , , (n )  = f p , , ( n )  and g F l ( n )  = g;,l(n) = gP, / (n) .  With the help of the 
auxiliary generating functions 

Fb,,(L, R) = 1 fp.,(n)L(n+l)12R'"-~'12 
CO CO 

( t i  + O / Z R  (n - I l l 2  G ~ , I ( L R ) =  1 g p , i ( n ) L  
n = O  n = O  

( 6 4  b 1 
X 03 

FFl(L, R )  = c fp,l(n)L'"-"'2R'n+,'12 G;,(L, R )  = gp,l(n)L'n-"'2R(n+') '2 
n = O  n = O  

( 6 ~  4 

L'=Ft l - I , I (L ,R)  R'=Ff , - I , I (L ,R) .  (7a,  6 )  

the renormalisation equations take the obvious form 
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s - s i t e  r -s i te  
r- - -  -I r - -1r - -  -1 

i - - - l i  - - J L - - l  
- P -  

- I - site 

- ,  - ,  - - ,  . - .  I -  - , -  - - ,  , - 

- 1 -  

Figure 1. The partition of a lattice into /-site groups ( I  = 3, p = 5 )  

Whenever 1 = 0 we simplify the notation by putting fp ,o(n)  = f p ( n )  and g,,,(n) = g p ( n )  
(by definition fp(0) = 0, gp(0) = 1 ) .  In this case we do not have to distinguish between 
the left and right directions in the generating functions because an equal number of 
steps is made in each direction: 

Fi.0 (L  R 1 = FFo (L  R ) Fp (L,  R 1 G ; , ~ ( L ,  R )  = G F ~ ( L ,  R )  = G,(L, R ) .  
@a, 6 )  

Using the consequences of the definitions of g , l ( n )  and f p , l (n )  

Fp+l(L, R)=LRGp(L, R )  ( 1 O C )  

FpL+i,i+i (L,R)=LG;,,(L, R )  ( 1 0 d )  

F;+i.i+i U-, R)=RGFI(L ,  R )  (10e)  

F;+z.i+i W ,  R)=LF;,,(L~R)[G~+~(L,R)G~(L,R)/G~-I(L,R)I ( l o f )  

F;+z,i+i (L  R)=RFFi(L  R)[Gp+i(L R)Gp(L, R)/Gp-i(L RI]. ( l o g )  

Using (loa-g) and F1(L, R )  = LR we are able to generate the renormalisation 
equations (7a,  6)  for arbitrary 1. 

Let us analyse the renormalisation equations in the simplest case 1 = 2. Later we 
shall prove that all the conclusions obtained in this case are valid for arbitrary 1. 
Equations (7a,  6)  take the form 

L '=L2 / (1  -2LR) R ' =  R 2 / ( 1  -2LR).  ( I la ,  6)  
We look for the fixed points that satisfy the obvious (in our problem) condition 
L + R = 1 .  There are three of them with the corresponding eigenvalues and the values 
of the index v calculated according to (5): 

LF=0.5,RF =0.5 A ; , *  = 4 ,  2 v = 0.5 

L;  = o ,  R ;  = 1 

L F I I = ~ , R $ I = O  A:Y2 = 2 ,  0 v = 1 .  

A :!, = 0, 2 v = l  

With the help of equations ( 1  la, 6)  we check that the condition L + R = 1 implies 
L'+R'= 1 ;  the L +R = 1 line is invariant under the renormalisation transformation. 
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The flow diagram is shown in figure 2. Our renormalisation group results are thus 
in complete agreement with the formula (4) obtained by a different method. The 
index Y is equal to 0.5 in the case of an isotropic system (L = R = 0.5) and is equal 
to 1 whenever the smallest anisotropy is present (L = 1 - R f 0.5). 

R 

Figure 2. The flow diagram. 

Now we shall prove by induction that our results remain valid for arbitrary 1. First 
we show that if the renormalisation equations have the fixed points (12) for 1 = k then 
they have the same fixed points for f = k + 1 .  This is checked with the help of equations 
( lOf ,  g)  and equation (13) 

(13) 
obtained by combining ( loa)  and ( 1 0 ~ ) .  In the case of the fixed point L = R = 0.5 
one proves by induction that G,(0.5, 0.5) = 2(p + l ) / ( p  +2) which implies 

Gp+li0.5, 0.5)Gp(0.5, 0.5)/Gp-1(0.5, 0.5) = 2 forp=21-1. (14) 

GPAI(L, R )  = (1 -LRG,(L, R))-' 

In the case of the remaining two fixed points we have 

G,(O, 1) = Gp(l ,  0 ) =  1 

Equations ( lOf ,  g), (14), ( 1 5 )  indicate that the fixed points (12) are also present for 
I = k + l .  

Now we prove by induction that the renormalisation transformation (7a,  6 )  
linearised around these three fixed points 

I R = R *  

R=R' 
has the form 

, 
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0 0  1 1  
To*l=(l J o). 

Formulae (17a-c) are true for 1 = 2 and if we assume that they hold for 1 = k we can 
prove them for 1 = k + 1 by differentiating both sides of (lOf,  g) with respect to L and 
R. In this calculus the following facts, which can be proved by induction for arbitrary 
1 by differentiating both sides of (13) with respect to L and R,  are used: 

R = l  R = l  

R = O  R = O  

The eigenvalues at the fixed points have the following form: 

L; = 0.5, RI* = 0.5 A :.2 = 1 2 ,  1 v = 0.5 

L;  = 0, R ;  = 1 A:t2 = 0,I v = l  (19) 

L ; I = l ,  R;I = O  A ::2 = 1,O v = l .  

The last property we prove by induction is the invariance of the L + R = 1 line under 
the renormalisation transformation. Once again we use equations ( lOf ,  g)  to prove 
that for L + R  = 1 

FkI-1,' (L,  R )  = L1/(L'  + R ' ) Ff'-1,i(L, R ) = R ' / ( L ' + R ' ) .  (20a, b )  

Formula (21) is true for p = O  and can be proved by induction for arbitrary p with 
the help of (13). Equation (21) is then used to verify that for L + R  = 1 

(22) G2' = 1 +LR[(L' +R ' ) / (L '+ l+R '+l ) ]G~- l .  

Using (22) and ( l O f )  we get for L + R = 1 

L' G2i(L, R ) G - i ( L ,  R )  
F k I + l , i t l  ( L , R )  = L v  

L + R  G/-i(L, 

Equation (206) is proved in an identical way. We thus see that if L + R = 1 then 

L ( + R (  = L' / (L '+R' )+R' / (L '  + R I )  = 1. (24) 
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3. Conclusions 

The main result of this paper is an exact, two-parameter renormalisation group analysis 
of diffusion on an anisotropic chain. Our analysis is restricted in a natural way by the 
requirement that the sum of weights connected with the step to the left and the step 
to the right is equal to one. This condition reflects the normalisation of the probability 
distribution for stepping from a given site either to the left or to the right. We prove 
then, for arbitrary cell size, the discontinuous behaviour of the index v as a function 
of the symmetry of the system: if the system is isotropic, v = 0.5; if not, v = 1. This 
is in agreement with the universality hypothesis: the symmetry of our system deter- 
mines the universality class to which the system belongs. 
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